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ABSTRACT

We propose a supervised no-reference (NR) quality assess-
ment algorithm for assessing the perceptual quality of natural
stereoscopic (S3D) videos. We empirically model the joint
statistics of motion and depth subband coefficients of an S3D
video frame using a Bivaraite Generalized Gaussian Distribu-
tion (BGGD). We compute the BGGD model parameters (α,
β) to estimate the statistical dependency strength and show
the features are quality discriminative. We compute the pop-
ular 2D NR image quality assessment (IQA) model NIQE on
a frame-by-frame basis for both views to estimate the spatial
quality. The frame-level BGGD features and spatial features
are consolidated and used with the corresponding S3D videos
difference mean opinion score (DMOS) labels for supervised
learning using support vector regression (SVR). The overall
quality of an S3D video is computed by averaging the frame-
level quality predictions of the constituent video frames. The
proposed algorithm, dubbed Video QUality Evaluation using
MOtion and DEpth Statistics (VQUEMODES) is shown to
outperform the state-of-the-art methods when evaluated over
the IRCCYN and LFOVIA S3D subjective quality assessment
databases.

Index Terms— Stereoscopic Video, Perceptual Quality,
Natural Scene Statistics.

1. INTRODUCTION

In this work, we propose a supervised NR video quality
assessment (VQA) model for S3D videos. Several S3D
NR VQA models [1, 2, 3, 4] have been proposed based on
spatiotemporal segmentation, spatial structural loss measure-
ment, motion inconsistencies, etc. More recently, Yang et al.
[5] proposed an S3D supervised NR VQA metric based on
a multi view binocular perception model. They applied the
curvelet transform on spatial information of an S3D video to
extract the texture analysis features and optical flow features
were utilized to measure the temporal quality. Finally, they
used empirical weight combinations to pool these scores to
compute the overall quality score. Ha and Kim [6] proposed
an S3D NR VQA metric based on temporal variance, intra
and inter disparity measurements. Depth maps are computed

by minimizing the mean square error values, and motion vec-
tor length is calculated to estimate the temporal variations.
Intra and inter frame disparities were computed to measure
the dependencies between motion and depth components.
Chen et al. [7] proposed an S3D NR VQA model based on

(a) Reference left view of an
S3D video.

(b) Isoprobability contour plot
of reference view.

(c) Bivariate GGD fit of
reference view.
χ = 2× 10−7.

(d) α an d β parameter variation
at different H.264 distortion

levels.

Fig. 1: Illustration of isoprobability contours and BGGD fits
between motion vector and disparity map statistics of pristine
Boxers S3D video of IRCCYN database. BGGD model pa-
rameter variation of reference and H.264 distortion levels of
corresponding S3D video.

a binocular energy mechanism. They computed the auto-
regressive prediction based disparity measurement and rely
on natural scene statistics of an S3D video to compute the
quality. Jiang et al. [8] proposed an S3D NR supervised
VQA model based on tensor decomposed motion feature ex-
traction. They computed the univariate GGD, asymmetric
GGD, spatial and spectral entropy from the tensor decompo-
sition. The random forest classifier was used to predict the
quality of an S3D video.

2800978-1-4799-7061-2/18/$31.00 ©2018 IEEE ICIP 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on May 05,2022 at 19:22:45 UTC from IEEE Xplore.  Restrictions apply. 



Stereoscopic video

Motion Vec-
tor Estimation

Steerable Pyramid
Decomposition

Depth Map
Estimation

Steerable Pyramid
Decomposition

BGGD Model Fit Features

Spatial
NIQE Scores

DMOS scores

Supervised Learning, Regression

Fig. 2: Flowchart of the proposed VQUEMODES algorithm.

None of the above algorithms have studied or utilized the
statistical dependencies between motion and depth compo-
nents. We propose an NR VQA algorithm for S3D videos
based on quantifying the statistical dependency between
the motion and depth components of an S3D video com-
bined with a spatial quality estimate. Our algorithm is called
Video QUality Evaluation using MOtion and DEpth Statistics
(VQUEMODES) and is described next.

2. PROPOSED ALGORITHM

Psychovisual experiments on the mammalian visual cortex
to explore the disparity selectivity in middle temporal (MT)
area of the brain [9, 10] have concluded that the MT neu-
rons are not responsible for motion processing but are also
highly tuned for binocular disparity processing. Motivated by
these findings, we attempt to model the joint statistical depen-
dencies between motion and depth statistics using a Bivariate
Generalized Gaussian Distribution (BGGD).

While this model is inspired from our work in [11], we
would like to highlight that a statistical analysis of the de-
pendencies between motion and depth subband coefficients
of natural S3D videos has not been carried out previously (to
the best of our knowledge). Through this work we also high-
light the utility of this model in an NR VQA application. We
model the joint statistics of motion and depth components us-
ing a BGGD and estimate the BGGD model parameters (α, β)
to quantify the statistical dependency between the motion and
depth components of an S3D video frame. We show the fea-
tures are distortion discriminable and use them in the quality
computation of an S3D video.

2.1. BGGD Modeling

We empirically show that a BGGD accurately models the
joint histogram of motion and depth subband coefficients of
an S3D view. Consider a multivariate GGD distribution of a
random vector x ∈ RN given as [11]

p(x|M, α, β) =
1

|M| 12
gα,β(x

TM−1x),

gα,β(y) =
βΓ (N2 )

(2
1
βΠα)

N
2 Γ ( N2β )

e−
1
2 (
y
α )β ,

where M is an N × N symmetric covariance matrix and
gα,β(·) is the density generator. Since motion and depth are
the two parameters in the model, N = 2. Therefore, the
above multivariate GGD becomes a bivariate GGD. We com-
puted the α and β scores at multiple scales (3 scales) and
multiple orientations (00, 300, 600, 900, 1200, 1500) using the
steerable pyramid decomposition [12].

Fig. 1a shows the 100th frame from the left view of the
pristine Boxers S3D video from the IRCCYN database [13].
Fig. 1b shows the isoprobability contour plot of joint sub-
band coefficients of the motion vector and depth map of an
S3D video frame and Fig. 1c shows the estimated BGGD fit
of respective contour plot Fig. 1b. The motion vectors are
computed using the standard three-step search method [14].
The disparity map is computed using the SSIM based stereo
matching algorithm [15]. The contour plot clearly shows the
dependencies between motion and depth components. Specif-
ically, we arrive at this conclusion due to the circular asym-
metry in the plots. We have further verified that the product
of the marginals is different from the joint distributions.

The dependencies between motion and depth components
vary with distortion and is reflected by the changes in the
model parameters (α, β). Fig. 1d shows the BGGD features
of the pristine Boxers S3D video and its H.264 compressed
versions. It is clear that the estimated BGGD features are
well segregated with respect to the perceptual quality level.
Also, we check the efficacy of proposed model by computing
the goodness of fit (χ) value between estimated fit and our ob-
servation. In our analysis we observed that χ are in the range
10−8 and 10−6 for all S3D video sequences. These obser-
vations motivate us to use the BGGD features in the quality
computation of an S3D video. The plots in Fig. 1 are shown
for the first scale and 00 orientation of the steerable pyramid
decomposition.

2.2. No-Reference Video Quality Assessment

The flowchart of the proposed algorithm is shown in Fig.
2. The feature extraction stage estimates frame-wise BGGD
model parameters to represent motion and depth quality fea-
tures, and relies on the NIQE score [16] as the spatial qual-
ity feature. These features are then used to train an SVR for
frame-wise quality score estimation. For video-level quality
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Table 1: 2D & 3D I/VQA performance evaluation on the IRCCYN S3D video database.

Model Type Algorithm H.264 JP2K Overall
LCC SROCC RMSE LCC SROCC RMSE LCC SROCC RMSE

2D NR IQA
BRISQUE [17] 0.7915 0.7637 0.7912 0.8048 0.8999 0.5687 0.7535 0.8145 0.6535

NIQE [16] 0.6403 0.6617 0.8686 0.8808 0.7240 0.6206 0.5524 0.4183 1.0326

3D FR IQA
Chen et al. [15] 0.6620 0.5720 0.6915 0.8817 0.8724 0.6182 0.7980 0.7861 0.7464
STRIQE [18] 0.7913 0.7167 0.8433 0.9017 0.8175 0.5666 0.7931 0.7734 0.7544

3D FR VQA

FLOSIM3D [19] 0.9589 0.9478 0.3863 0.9738 0.9548 0.2976 0.9178 0.9111 0.4918
PQM [20] - - - - - - 0.6340 0.6006 0.8784

PHVS-3D [21] - - - - - - 0.5480 0.5146 0.9501
3D-STS [22] - - - - - - 0.6417 0.6214 0.9067

SJND-SVA [23] 0.5834 0.6810 0.6672 0.8062 0.6901 0.5079 0.6503 0.6229 0.8629
3-D-PQI [24] 0.9306 0.9239 - 0.9413 0.9266 - 0.9009 0.8848 -
DeMo3D [25] 0.9161 0.9009 0.4564 0.9505 0.9326 0.4074 0.9272 0.9187 0.4651

3D NR VQA

Yang et al. [5] - - - - - - 0.8949 0.8552 0.4929
BSVQE [7] 0.9168 0.8857 - 0.8953 0.8383 - 0.9239 0.9086 -

MNSVQM [8] 0.8850 0.7714 0.4675 0.9706 0.8982 0.2769 0.8611 0.8394 0.5634
Supervised BGGD features only 0.9253 0.8955 0.3555 0.9690 0.9477 0.2572 0.9569 0.9330 0.3162

VQUEMODES (NIQE) 0.9594 0.9439 0.1791 0.9859 0.9666 0.0912 0.9697 0.9637 0.2635

prediction, the individual frame-wise quality predictions are
simply averaged. The algorithm is described in detail in the
following.

2.2.1. Feature Extraction

• Motion and Depth Features: Three-step motion vector
estimation method [14] is used to compute the motion
vector map at a macroblock size of 8 × 8. The magni-
tude of motion vector is computed and utilized as the
motion feature in our algorithm. An SSIM based stereo
matching algorithm [15] is used to compute the dispar-
ity maps in our algorithm.

Steerable pyramid decomposition was performed on
the estimated motion vector and disparity maps at
multiple scales and orientations. To maintain the con-
sistency with the motion vector block size of 8× 8 the
depth maps are averaged to match this block size.

• BGGD model parameter estimation: As mentioned
previously, we used three spatial scales and six orien-
tations in our analysis resulting in a total of 18 sub-
bands for every stereoscopic video frame. The BGGD
model parameters are computed at every subband re-
sulting in a feature vector f= [α1 . . . α18;β1 . . . β18]
per frame. For an S3D video, the feature vector set is
[f1, f2 . . . fn], where n is the number of video frames
and fi = [α1

i . . . α
18
i ;β1

i . . . β
18
i ]; 1 ≤ i ≤ n− 1.

• Spatial Feature: We evaluate the NIQE [16] model on
the frame-by-frame basis of each view of an S3D video
to compute the spatial feature. NIQE is an opinion and

distortion unaware NR 2D IQA model.

S =
1

n
×

n∑
i=1

NIQELi +NIQERi
2

,

where L,R represent the left and right views of an S3D
video. n indicates the total number of frames of an S3D
video. NIQEL andNIQER represent the frame level
NIQE scores of the left and right views. S represents
the overall spatial quality of an S3D video.

2.3. Supervised Learning and Quality Estimation

The spatial quality feature (Si) is appended to the aforemen-
tioned BGGD features to form the feature vector of a video
frame fsi = [α1

i . . . α
18
i ;β1

i . . . β
18
i ;Si]. We believe that over

short temporal durations, the average DMOS score of an S3D
video and the frame-level DMOS score are highly correlated
and are interchangeable. Therefore, we performed the regres-
sion of the frame-level features fsi and the video-level DMOS
scores D as its label. For video V ,

fs
V

i = [α1
i . . . α

18
i ;β1

i . . . β
18
i ;Si],

with the corresponding label DV . This feature vector and
label set is used to train an SVR. SVR is shown to provide
good performance even when the available training set size is
small, demonstrate accurate performance in one-versus-rest
schemes, provide sparse solutions and accurate estimation of
global minimum etc. In our work, we used the radial basis
function (RBF) kernel as it gave the best overall performance.

We use regression to estimate the scores of test video
frames. It should be noted that the training and regression
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happen at the frame-level. The overall (video-level) qual-
ity score is estimated by averaging the frame-level quality
estimates.

3. RESULTS AND DISCUSSION

The efficacy of proposed algorithm is evaluated on the IRC-
CYN [13] and the LFOVIA [26] S3D video databases.

The IRCCYN database has 10 reference and 70 test S3D
video sequences. The video sequences have a resolution of
1920 × 1080 and saved in .avi container. The frame rate is
25 fps and a duration of either 16 sec or 13 sec. The database
is a combination of H.264 (QP=32, 38, 44) and JP2K (Bitrate
= 2, 8, 16, 32 Mb/s) distorted S3D video sequences. These
artifacts are applied symmetrically on each view of an S3D
video and published the DMOS scores as subjective scores.
The LFOVIA database [26] has H.264 compressed stereo-
scopic video sequences. The database has 6 pristine and 144
distorted video sequences and saved in .mp4 container. The
video sequences have a resolution of 1836× 1056 pixels with
a frame rate of 25 fps and a duration of 10 sec. They used four
different bitrates (100, 200, 350, 1200 Kbps) and created 24
symmetric and 120 asymmetric distorted S3D videos. The
subjective study is performed using the ACR-HR method and
published DMOS scores as subjective scores.

For both the databases, 80% of the videos are used for
SVR training and the remaining samples are used for regres-
sion. In other words, the training and test sets are obtained
by partitioning the set of available videos in the 80:20 pro-
portion. Once this video-level partitioning is done, the actual
training happens at the frame-level. During regression, the
frame-level scores are estimated and averaged to compute the
video-level quality score. We empirically justify the averag-
ing of the frame-level scores to generate the video-level score.
In over 1000 regression iterations, we found that the standard
deviation of frame-level scores for a given video varied be-
tween 0.2 × 10−8 and 0.25.

We used the open-source SVM package LIBSVM [27] in
our experiments. We performed the training and testing 1000
times for statistical consistency with a random assignment of
video-level samples without overlap between the training and
testing sets. The reported results are the average over these
1000 trials. The performance of the proposed metric is mea-
sured using the following statistical measures: Linear Corre-
lation Coefficient (LCC), Spearman’s Rank Order Correlation
Coefficient (SROCC) and Root Mean Square Error (RMSE).
All these results are evaluated after performing a non-liner
logistic fit [28].

Tables 1 and 2 shows the performance evaluation of pro-
posed metric on IRCCYN [13] and LFOVIA [26] S3D video
databases. Also, we compared the proposed metric results
with different popular 2D and 3D IQA/VQA metric perfor-
mances. BRISQUE [17] and NIQE [16] are 2D NR IQA mod-
els. Chen et al. [15] and STRIQE [18] are 3D FR IQA met-

Table 2: Performance evaluation on LFOVIA S3D Video Database.

Algorithm LCC SROCC RMSE
NIQE [16] 0.7206 0.7376 11.1138

STMAD [5] 0.6802 0.6014 9.4918
DeMo3D [25] 0.9033 0.8991 5.0392

VQUEMODES (NIQE) 0.8943 0.8890 5.9124

rics. These IQA metrics were applied on a frame-by-frame
basis for each view, and the final S3D quality score is com-
puted by calculating the mean score of all frame scores of
both views. FLOSIM3D [19], PQM [20], PHVS-3D [21], 3D-
STS [22], SJND-SVA [23], 3-D-PQI [24] and DeMo3D [25]
are popular S3D FR VQA models. Yang et al. [5], BSVQE
[7] and MNSVQM [8] are S3D NR VQA models. From the
results, it is clear that the proposed metric out performs all of
the 2D and 3D IQA/VQA FR and NR models on IRCCYN
and LFOVIA S3D video databases.

We show the efficacy of proposed spatial and joint mo-
tion and depth features in Table 1 on IRCCYN S3D video
database. It is clear that from the table the estimated BGGD
features alone show good performance across all distortion
types and on the entire database as well. This highlights
the distortion determinability of the proposed BGGD model
based features. Further, it is clear that including the spatial
scores shows a consistent improvement on the IRCCYN S3D
video database.

4. CONCLUSION

A supervised NR VQA algorithm for natural S3D videos was
proposed based on modeling the joint statistical dependencies
between motion and depth subband coefficients. We showed
the proposed BGGD model well captures these dependen-
cies and estimated BGGD coefficients are distortion discrim-
inable. The proposed VQUEMODES algorithm was evalu-
ated on the IRCCYN and LFOVIA S3D video databases and
shown the state-of-the-art performance compared to the other
2D and 3D IQA/VQA metrics. In future, we plan use the pro-
posed model in depth scene estimation from temporal maps,
visual navigation, denoising etc.
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